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Outline E

« Edge-plasma response to NSTX lithium module

* Low-collisionality edge-plasma transport; T;, > T, , magnetic
trapping

 Temporal heat-flux pulses from ELMs
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Edge-plasma conditions have been calculated
UEDGE for various NSTX power levels
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Various core-edge densities used as boundary conditions; n_sep ~ 0.6 ncore

Impurity radiation is neglected; module alighed to divertor plate
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Lithium contamination of core from NSTX module

modeled bz coueling UEDGE & WBC ug

* Heat and particle flux to module
computed by UEDGE

« Temperature rise of Li surface
from Ulrickson’s model

» Sputtering of Li from U. Ill.
composite model

« WBC calculates lithium source
near the divertor plate

« UEDGE uses this Li source to
calculate lithium density
throughout the edge region
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UEDGE takes lithium ion source
from WBC 5 cm above the plate

Full SOL hydrogen/lithium plasma
is then evolved to steady state with
hydrogen core-edge density 4x101°

For the planned 40 cm (toroidally)
module, only 0.2% Li at core edge

For full toroidal coverage with 13
times more module gives 2.5% Li

Even for full coverage, Li SOL
radiation is only 6.4x104 W, or 1%
of core input power; thus, no need
to iterate WBC/UEDGE here

Lithium ion density (m3)

Core-edge lithium concentration from 40 cm
module is ~0.2% for 6 MW case
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Lithium flows throughout the SOL, but core
bounda[x concentration is onlx ~0.2% E

« Lithium concentration peaks in outer SOL and private-flux region
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Large lithium flow away from divertor in the @

outer SOL region =

Vertical position (m)

Lithium ions are lost to three main areas:

— Outer divertor plate: 45%
— Outer wall: 30%
— Inner divertor: 25%
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in the edge-EIasma region that can effect flows

Spherical tori have large variations of B-field E

NSTX UEDGE mesh

* Low recycling by lithium (or
external divertor) leads to weaker
collisionality via lower n; and
higher T,
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* lons stay hotter and have slower
relaxation times than electrons
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* lons acquire significantly different
T,, T, temperatures, giving
-(T,-T,) dB/ds force on ions

Major radius, R (m)

* Impurity intrusion can be affected
by the changes in the hydrogen {We have completed the coding and initial ]

edge plasma and their own T, debugging for separate T and T,
anisotropy equations in UEDGE
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Low density, high temperature for low recycling —@

Elasma limits single T-I assumetion for all seecies =]

* Previous SOL fluid transport modeling uses a summed ion energy
equation based on high collisionality

 Low recycling leads to low collisionality
* Resulting lower impurity temperature can reduce influx to core
- Separate T, equations have been implemented in UEDGE to assess

this effect
« ION PARALLEL MOMENTUM « PERPENDICULAR TEMPERATURE EQN. REQUIRED
g(mnv )+ 9 NV | Vig — O g
pp I g \ T e g o (Ti) == —nan(To = Ty)
T ay M| Viy — Tya ay where the collision frequency is
B, [ 9p _
-5 (_8—;> — mngng Koo (Vi) — va)|) vp = Ain;InA Zg(frnl[,/mi)l/2 T, 3/2
— mane (Vi) — 1 Kivn)) and T; = (2/3)(Tis + Ty /2).
B, dB
+ni(TiL _Tiﬂ)ﬁa
with =,y the poloidal and radial directions, respectively.
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Time history and width of energy deposition
n divertor surface helps determine damage

o
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 Electron conduction time is fast

* lon conduction and convection
are much slower [~(m_/m,)"2]

« Experiments indicate substantial
power comes out on the ion time-
scale

* In/out divertor asymmetries and
parallel currents play important
roles in which plate receives
most of the energy

One-Dimensional SOL ELM Models

Symmetric, recycling divertor
, at the end; no current
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Significant ion ELM energy is transmitted to =
the electron channel via Coulomb collisions L@_

. UEDGE model is used in 1D and ? Fieciron
2D with kinetic corrections for o o
heat transport & sheath loss Ng 101 TVTe exch. | |

=

- ELM is simulated by energy and L e —
density injected at midplane for $
200 usec 10}

—> 200 ps ELM _
o 1 2 3

* For the heat flux at the plate, a Time (ms)
fast electron response is seen, 30 ' “Collisional exchange
but a second electron response - reduced by 0.1
from (T,-T,) collisional coupling is g = oeten
observed S Cosionl | |
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« Plate power deposition time is 3 'Pg

several times the input duration *
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Collisional coupling remains large for high
power ELM E
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* Increasing ELM energy more
clearly separates the electron and
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Time-dependent ELM modeling is being done

by UEDGE E

e UEDGE considers SOL currents
and ExB drifts

« Characteristic two-time-scale
seen: electron conduction and
ion flow

« Parallel currents can dominate
heat flow, causing outboard or
inboard peaking, depending on
current direction

« Can currents be manipulated to
advantage?
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Summary E

« Lithium intrusion to the core is only ~0.2% for the
40 cm NSTX module

« lon temperature anisotropy and magnetic
trapping being included in fluid edge-plasma
transport modeling - important for low recycling

 ELM heat fluxes are strongly influenced by
electron/ion thermal coupling and parallel
currents
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