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Outline:
• Physical mechanisms & equations
• Model for He nano-bubble formation in aging metal tritides

- Modifications for bubbles in liquids
• Examples for He implantation in liquid Li, Sn, Ga
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We use a 1d finite-difference, diffusion code 
to calculate evolving concentration profiles.
• Coupled differential equations follow He atom and bubble concentrations 
as a function of depth and exposure time:

dcn/dt = - Dn d2cn/dx2 + (Source terms)n - (Loss terms)n

where cn = concentration of bubbles with n atoms.

Source terms: for n=1, implant flux = ø(x,t)TRIM

n-species formation factors = c1cn-1 & cn+1exp(-En+1/kT)
Loss terms: n-species dissociation factors = cn exp(-En/kT)

n-species promotion factors = c1cn

(Species formation and loss rates also involve attempt frequency
and bubble size factors.)

(This code accurately describes helium nano-bubble formation and growth 
in aging solid metal tritides.)
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Model for Liquid Metals (cont.)
• The nano-bubble stability is determined by the liquid metal’s 
surface tension γ:

Binding energy of n-th He, En = 4π [ (rn-1
2+r1

2) - rn
2 ] γ.

• The bubble pressure pn and radius rn are related by 

pn = 2γ/rn.

• We assume spherical bubbles so that 

Vbubble = (4/3)πrn
3 = n va, 

where va(p,T) is the He atomic volume as determined by the bulk 
He equation-of-state, corrected for bubble wall curvature effects 
(J. Nucl. Materials, 122 (1985) 565).

• Nano-bubble migration is included using the Stokes-Einstein 
equation for diffusion of sub-micron particles:

Dn = kT/6πηrn.
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Finite Element Calculation by P. Klein

TEM by P. Kotula

We follow an approach used to describe bubble 
evolution in metal tritides.

• Radioactive decay of tritium in 
metals creates high pressure, 
Helium-filled nano-bubbles.

• Bubble growth with age causes 
material swelling and changes in 
tritium retention characteristics.

• Bubble interactions produce high-
stress regions which 

- modify bubble growth,
- cause bulk material fracture.

• He is released rapidly when the 
inter-connected bubble network 
generates a pathway to the surface.
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• Treat all stages of He Release:  Early, Rapid, & transition between.
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• Uses an analytic formulation sufficient 
to capture the essential physics.
- Atomistic detail is added, as needed, 

for “fine-tuning”.

• Nano-bubble evolution is modeled 
as three distinct, separable stages:

Bubble Nucleation
- by self-trapping

Bubble Growth
- by dislocation loop punching

Helium Release
- by inter-bubble Fracture

Goal for aging tritides:  Model retention 
of 3He generated by tritium decay.
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Bubble nucleation by self-trapping occurs during 
a short pulse in mobile He concentration. 

• Modeled using 3 components: 
mobile He, He-pairs, bubbles:

dcm/dt = g-2ps1cm
2-ps2cmc2

+2q2c2-psb(r)cmcb

dc2/dt = ps1cm
2 -q2c2 -ps2cmc2

dcb/dt = ps2cmc2

generation rate, g = λ(T/M) 
jump rate, p = 12D/a2

pair dissoc. rate, q2 = pe-E2/kT

• Recent He implant/re-emission 
experiment gives D≈2Å2/s at RT, 
confirming the self-trapping model.
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• Constitutive relations for bubble growth:
- Mass conservation:  (r/R)3 fp = (vHe/vMH)(He/M)

(v=molar volume, fp=.64 for random array packing)
- Loop-punching:  p = 2γ/r + µb/r(1+ε)

(γ=surface energy, µ=shear modulus, b=Burgers vector)
- Bulk He EOS: vHe(p,T)

• For a given bubble 
spacing R:  At each 
He/M there is a
unique r, p, vHe:

Modeled bubble 
pressures agree 
with pAv deduced 
by NMR.

Array of Spherical 
Source Volumes

TEM [1] gives 5e17 bubbles/cc
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Each bubble’s growth is determined by its 
He supply rate -- its tritium source volume. 
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• 3He NMR (motion) separates 
sol-He from liq-He in bubbles.

• Growth relations convert fluid 
fractions to bubble distributions.
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Bubble Spacing Distribution 
for Aged Tritide

Enhanced by normalization:
- NMR missed He in 
bubbles with r < 12Å

The constant spacing distribution 
- verifies nucleation has stopped
- provides sensitive test of model.

The distribution of bubble spacings is needed 
to evaluate bubble-bubble interactions.
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• Rapid release should occur when 
bubbles at mean bubble density
undergo inter-bubble fracture.

• As bubbles grow, tension on the inter-bubble ligament increases.

• Evans’ fracture criterion:
(Uses average ligament stress)

For plane through adjacent bubbles,
fracture occurs when:

pLP (bubble area) > σF (metal area)

(σF = fracture strength ≈ µ/4π)
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• Mobile He remains 
plentiful near releasing 
surfaces and pipes.

• Model correctly predicts bubble 
denuded zone thickness.

This high mobile 
He concentration 
contributes the 
Early He Release.

Bubble nucleation is lower near surfaces.
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• Modeled using coupled diffusion equations for concentrations cn:

dcn/dt = - Dn d2cn/dx2 + (generation terms)n - (promotion, dissociation terms)n
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• Initially, release is high until bubbles 
become large enough to compete 
with nearby surface or GB pipeline.

• Mobile He near surfaces & GB’s 
produce the Early Release Fraction.

- Slowly increases with “breach” 
of near-surface bubbles.

• Rapid Release occurs when bubble 
network becomes interconnected.

- Depends on mechanism details.

Model shows how material parameters affect each part of release spectrum.

The computed He release for solid tritides has 
all the characteristics of observed release.
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Modeling differences for He implantation in 
Liquid Metals:

• The nano-bubble stability is determined by the liquid metal’s 
surface tension γ:

Binding energy of n-th He, En = 4π [ (rn-1
2+r1

2) - rn
2 ] γ.

• The bubble pressure pn and radius rn are related by 

pn = 2γ/rn.

• Nano-bubble migration is included using the Stokes-Einstein 
equation for diffusion of sub-micron particles:

Dn = kT/6πηrn.

• Bubble coalescence can occur and may be of major importance.
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Results show high plasma fluxes can produce the 
He concentrations needed to generate bubbles. 

• The bubble formation is strongly flux dependent. 

• A significant He fraction will be retained after 50 µs 
-- only if bubbles are formed and retained.
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Computed profiles show bubble concentrations 
drop several orders for each δn=1 increase in size.

• High surface concentrations 
drive atomic He and small 
bubbles deep into the fluid. 

• The release rate is significantly 
slower for He in larger bubbles. 
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The rapid dissociation of small bubbles is due to a 
low He binding energy to the bubble. 

• Production of large stable bubbles 
requires:

species promotion > dissociation

or snc1 > n exp(-En/kT),

sn= bubble surface area
c1= atomic He concentration. 

• At .01 A/cm2, 600 K, c1~10 appm;   
which requires 

En ≥ 0.4 eV.

• The promotion rate increases with 
c1 or He flux.
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Early high flux results showed both Sn and Ga 
will pump He if implanted deep enough. 

• Calculation is for same He 
implant depth in each metal 
and high He flux (0.3 A/cm2). 

• Parameters used in model:

D(10-4cm2/s)  γ(GPa-Å)

Li 1.0 3.8
Sn 0.5 5.3
Ga 1.0 7.2

• Without bubble formation, 
He diffusivity is only effect.

• In Li, bubbles still remain too 
small to be stable.
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At these equivalent implant depths, profiles show 
most of the He is retained in bubbles . 

• Concentrations of atomic 
He are much lower than the 
“He in bubbles”.

• Ga has more bubbles, due 
to higher binding E.

• Sn has larger bubbles, due 
to slower migration and 
more time to grow.
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Recently added “small bubble coalescence” 
significantly reduces the He release rate. 
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With coalescence, concentrations of small bubbles 
remain low, but large bubbles become plentiful. 
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• The larger bubbles are 
immobile so their 
coalescence is rare. 

• The He/M concentration 
continues to grow with 
exposure time.
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The large bubbles are produced well beyond the 
He implant range. 

Ga Ga

• These large bubbles are relatively immobile.

• Their continued growth during long exposures will likely cause metal 
ejection.
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In summary, a high He flux can produce stable 
bubbles and high He retention in liquid metals. 
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• A high flux is needed to 
grow bubbles faster than 
they dissociate.

• Bubble stability increases 
with surface tension from 
Li to Sn to Ga.

• Bubble coalescence leads 
to continued growth with 
exposure -- likely causing 
metal ejection for t > 1sec.

• Release is slow after flux 
is terminated. 
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