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Outline

® Overview of the Flowing Liquid Retention
Experiment (FLIRE) at lllinois

® Recent modifications to FLIRE

® MHD experiments on FLIRE

® Future work plan for FLIRE

® Molecular Dynamic Modeling of liquid Li

® Explanation of temperature enhanced
sputtering --- a new code: MDTRIM

® Summary and acknowledgements
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General FLIRE Experimental Design

® The vacuum system is
composed of 2 TMPs and
2 Cryo pumps

®* SPECS IQE 11/35 lon
gun source provides 1014
lons/cm?/sec

¢ Upper and lower chamber
are connected by 0.3 cm?
orifice

¢ Upper and lower
reservoirs hold and
transport liquid Li

® New magnetic sector
mass spec for bottom and
TDS chambers

* RGA-QMS for upper
chamber

®* New magnet/electrode
design for MHD exps
(details later)

¢ LM compatible valves
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New TDS/Purification
system (here)




Upper vacuum chamber design
with ramps and bracket

SS ramp slides into stainless lon gun flange location
steel bracket. Each ramp is heated
by a tungsten/alumina heater

Transfer line tube from
lower reservoir (one on
each side)

o SS bracket is welded to a 6” flange
A\Lps attached to the upper chamber INTERACTION GROUP



Definition of retention coefficient

® The retention STy
coefficient is given 74 Li flow
by:
R=1
j Upper

Chamber

g. release rate Iin
the lower chamber

Lower

Jj- Injection rate In Chamber
the upper chamber

PLASHA ", e

Pare i TERUAL
L Ps INTERACTIDN GROUP

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||



Calculation of D from He
retention data

® From analytical model, the retention coefficient
IS given by:

DL
R = erf( 1 j =
2\/5 v: flow velocity
7 r. mean
D= v : implantation range
4L [erf_l(R)] L: path length from

striking point to exit

M. Nieto, et al., J. Nucl. Mater. 313-316 (2003) 646 PLAS LN T%RQUAL
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New TDS/Purification System major
components

(Sas Analyzer

To rough pump
[ |

TOSML Purifier
Chamhber FLIRE Lower

Reservoir

To FLIRE Main
Chamber

To Melt Chamber
(Lang Term storage)

L 1

FLIRE Upper
Resermir

®* New layout of TDS (thermal desorption
spectroscopy)/ Purification chamber installed
in FLIRE to measure long-term
retention/diffusivity of implanted helium and
chemically-bound hydrogen

® The new design also works to remove
implanted species from liquid-metal to be
recycled for additional runs in FLIRE
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TDS/Purification System

Heating of Chamber using Linear Partial Pressures prior to Calibration using He
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® Can get to temperatures above the decomposition
temperature of LiH (660° C)

® Main impurity is air, not water or hydrogen
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Magnetic Sector Mass Spectrometer

for residual gas analysis

® VTI Odyssey system
® Low-mass capability

® no "zero blast” issues
as in QMS systems

® Mass range: 1-100
amu

® 5X 10" Torr min.
detectable pressure
with electron multiplier

® Spectrometer is
shared between the
new TDS system and
FLIRE bottom
chamber

AN Ps INTERACTION GROUP
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ample magnetic sector RGA scan
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Mass Spectrometer sharing

® Both lower and TDS
chambers require gas
analysis capabillities

® Cost constrains do not
allow two units with the
desired sensitivity

¢ System of interlocks to
“share” the RGA system
was designed and
installed

s \Lp s INTERACTION GROUP
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New ability to study flow characteristic
effects on retention measurements

c

VAN

)

N

® On the right, double stream run (normal operation); on the left, single flow
run (proposed experiment). Concentration profiles shown

® Is surface "folding” an issue in the measurement of R and D?

® Is the quality of inter-chamber seal affected by using 1 stream only?

¢ Experiments underway to explore this issues
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Li contamination mitigation strategies
and internal heater upgrades

® Repaired ion gun source

® Improved pressure control in
LMISS with new diaphragm
gauge

¢ Internal tray protecting main
chamber gaskets

¢ Custom-made heaters will
significantly aid in plasma
source experiments

® New heaters also help reduce
down-time due to heater
failure

® The 4-in. long HV heaters are
made of Mo will deliver 100 W
able to operate up to temps
near 1000 °C
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Addition of MHD experimental
capability in FLIRE

Linear
Motion
feedthrough

Leads

Permanent , Lead holder
magnets

Magnet holder
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Addition of MHD experiments
capability in FLIRE (cont )

®* Permanent
magnets provide
a 600 G field
across flow (after
exposure to heat)

®* Upto6 Aof
current can be
passed through
the leads in the
flow direction
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Magnetic field strength along
iInternal ramps

® High uniformity across

flow, 2 cm region along
flow near 1000 G

® After 1 day of operation,
field intensity drop of
40% to 600 G at the peak

® Steepest gradient is

along the direction of the
flow, 1.14 T/m (after
demagnetization)
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NSTX conditions

® Field perpendicular

Magnetic field normal and perpendicular to the flow

to flow in NSTX
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MHD experiments on FLIRE

® Up to 6 A of current
passes through the

leads .
® Model the system as thium
two resistors in parallel — VW —
® Estimates of resistivity
and cross sectional A
area of Li flow and SS R ...

ramp give a lower limit
of 14%, and an upper of
30% passing through Li |
® Experimental
measurement yielded a

value of 23% of the
current passing through

the lithium -,
PM%%TERUAL
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Force estimates for the FLIRE
MHD experiments

®* EM force per unit

Z Z volume on the flow is
given by:
Y F .
'-—4 fEM (x) = ;M = ]LiB(x)
: /d' ® Gravitational force per
N Wl T unit volume is:
Stainless steel o ‘ \\\ dxc fg (X) — pg COS 9
° Forconstantvolume Fy,  1,B(x)
elements, theratoof 4 5HocosH
forces is: 8 LiPE
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Force estimates compared to
experimental results from FLIRE

° At 1A, no lift was

304 | Total current observed on the
N B i’ experiments
s {| * At5 A, the flow lifted from
§ 2.0—- 5 the floor of the ramp but
8 15- did not detach from the
5 | ramp
g ® Calculations with

05+ magnetic field after

S e | thermal demagnetization

Distance along the ramp (cm)
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Lithium flowing down the ramps
with no magnetic field
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Lithium flowing down the ramps
with magnetic field, no current
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Effect of lifting force on the flow

® Magnetic field
points from
bottom to top
of picture

® Current (5 A)
going to the
right (down the
ramp)

/T NLps INTERACTIDN GROUP
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Effect of lifting force on the flow
(cont'd)

t‘w— '
Hiha
gl

Two frames later (1/15
sec), the flow makes

touching top lead ,

only contact with the bottom
lead — note spark  pLasys ™
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Flow just started,
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Effect of lifting force on the flow
(cont'd)

A significant
portion of the
bottom lead is
covered by the
lithium, indicating

s that it has been

lifted above the
ramp floor
although it is still
In contact with the

= bottom of the




Effect of pushing force on the flow

® Magnetic field
points from
bottom to top
of picture

® Current (5 A)
going to the
left (up the
ramp)

/T NLps INTERACTIDN GROUP
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Effect of pushing force on the flow
(cont'd)

Empty ramp, no flow has Flow starts and both
started yet leads get covered
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Effect of pushing force on the flow
(cont'd)

T
1 L

During flow,
only the lead
tips get
covered with
lithium,
iIndicating thin
flow. Also the
curvature
seems to
disappear right
where the
magnets are

N
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Effect of pushing force on the flow
(cont'd)

A‘Lps

After the flow is
over, both leads
are exposed
again
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Dimensionless groups relevant to
MHD flows

® Reynolds number

® Hartmann number g7, _ py,

® Froude number

¢ Capillary number

® Bond number

A‘Lps
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Re =—
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Bo =
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NOMENCLATURE

v: flow velocity

v: dynamic viscosity

h: film thickness

g: gravity acceleration

y. surface tension

o. electrical conductivity
B: magnetic field

. density




Dimensionless numbers
calculations

Dimensionless parameter Fusion reactor | FLIRE
Reynolds (inertial vs viscous) 5500 890 — 4400
Hartman (EM vs viscous) 4300 172

Froude (inertial vs gravity) 20 65 —200
Capillary (viscous vs surf. tension) 0.001 0.001 —0.002
Bond (gravitational vs surf. tension) | 0.3 0.01 —0.05

® Froude and Hartmann numbers calculated for typical FLIRE conditions:
m v=0.8-2.0m/sec
m B=0.1Tesla
m h=1-2mm
® Proposed conditions in a fusion reactor (S. Molokov, I. Cox, C.B. Reed, Fusion
Technology 39 (2001) 880)
= V=1m/sec
m B=10Tesla
m h=05cm

T =300 °C for surface tension, density ,
A\Lps and viscosity values INTERACTION GROUP
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Future Work Plan in FLIRE

® Single liquid Li flow tests in FLIRE

m determine “folding” effect on retention/diffusivity
measurements

® Long-term evolution of implanted He and H
particles versus temperature (non-prompt
release)

® H* particle and H-plasma exposures
® He™ particle and He-plasma exposures
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Future Work Plan in FLIRE
(cont.)

® Ga experiments (summer 2003)

® More MHD effects on
retention/diffusivity in flowing liquid
metals (e.g. lithium, gallium)

® Addition of new diagnostics: QCMs for
erosion, ultrasonic transducers for film
thickness, IR thermography

® Installation of HHF source
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Modeling temperature enhanced
liquid-Li sputtering

® Experimental Li erosion data in [IAX and
PISCES-B demonstrate enhanced erosion
characteristic for temperatures between 200-
400 °C and incident particle energies
between 50-1000 eV

® A number of conjectures have been made
regarding the enhancement, yet no clear
model
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lIAX data: Li* on D-treated Liquid Li
vs T for various incident energies
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He™ on liquid Li with ad-hoc model in

A‘Lps
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®  |IAX Data for 700 eV He'on liquid Li
—V— Model 1: including sbe(T), be(T), C(T) and surface
deposited energy distribution altered
—¥— Model 3: keeping C_(T) constant with T at 50% D-Li %‘
——— Model 2: keeping sbe constant at 1.40 eV with T .

[ —— Model 4: deposited energy distribution at surface
i not altered
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VFTRIM-3D used ad-hoc models to
determine key mechanisms
responsible for enhancement

¢ Surface binding energy was

calibrated to mean ejected Siifios diiteifics

energy Of Sputtere_d lithium o Ml SKAs'simulate soft

atoms measured in PISCES-B / o o M2 collision parteners
7

as a function of system

temperature 0'*' o
® The SKA portion of collision :&—} ;

cascade was juxtaposed along

. | 4
surface to simulate near-surface P g
. . . . v o ¥ Soft collision partners
non-binary collisions absent in e (ignored by VFTRIM)
the BCA-based code, VFTRIM
¢ Deuterium surface

concentration varied as T/T,, Secondary knock-on atoms (SKAs)

increases (this effect was found Rl AU
to be minor in the enhancement
of Li sputtering)
PLASH
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Molecular Dynamics simulations
allow detailed knowledge of liquid
Li cascade dynamics

® studied 100 eV Li* at 45-degree incidence with
473 and 653 K system temperature (1000+ flights
iIn each MD simulation)

® near-surface energy cascade (~12-15 recoils
created per flight in'a 40 A depth)

s Energy recoill distribution
= Angular recoil distribution for PKA and incident particle

® surface binding energy obtained from potential
energy temporal history of sputtered atom in MD
simulations

o‘!...
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Collision Cascade is along Surface!
100 eV, 20-degrees, at 473 K
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Thermal motion contributes to
perpendicular energies --- 473 K
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Even greater thermal motion at
653 K
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Details of collision cascade for
100 eV 45-deg at 473 K
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Detalls of collision cascade for
100 eV 45-deg at 473 K (faster)




Same flight but at higher T
(100 eV 45-deg. at 653 K)




Our new code: MD-TRIM

® Principle Objective: Develop model(s) to
explain temperature-enhanced sputtering in
liguid metals

For 473 and 653 K, 1000+ MD flights were
performed to acquire sufficient PKA angular

and energy distribution information (~ 1200
total PKA’s)

This information was then folded into VFTRIM
to examine the impact of simulating the MD
cascade dynamics near surface for a large
number of flights
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Recolil angular distribution from
MD simulations

®* VFTRIM uses BCA

. ) Scattered Particle
Incident Particle

therefore, no recoil 0057 o L .. e RECOIANGIE
angles can exceed L ' Recoi
900 P\ 0.04 -
S N
® InMD hOwever, D-_ 0.03 V MolDyn Results (653K)
. > M MolDyn Results (473K)
multi-body effects = ' \ —— VFTRIM Results
. L 0.02+
allow the net recoil @ |
S _
angles to exceed £ 001 \
90°, recoils in - MA,\
general are along 0.00- Moo
surface 0 30 60 90 120 150 180

Recoll Angle

s \Lp s INTERACTION GROUP
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Recolil energy distribution from

MD simulations

® The key difference
between the high

L, 006 —— ViR temperature (653°K) MD

o3 I\ Melbwm@m run and both the low

= ; Molbym (633 temp. (473°K) MD and

o 0.04- . . . the VFTRIM runs is the

Pur - 1S thg r.a.t/o_of .the repoﬂ energy larger amount of energy

o to the initial incident ion energy ,

3 _ (% transferred to PKA) transferred to PKA's

O 0.02- ® As the temperature

- ’ Increases, an increasing

amount of the incident
0.00 1L VW el Micatns amae 4 iON €Nergy is transferred
0.00 0.05 0.10 0.15 0.20 tothe PKA’s

e = KEqeo [ KE ¢ ° Note: The x-axis values

extend to unit
PL “.J,;,P" *

U
b WATER UA[L
Lps |NTERACT|ON GROUP

||||||||||||||||||||||||||||||||||||||||||||||||||||||||




How surface binding energy is
obtained from MD simulations (473 K)

® The sbeis 5 - Kinetic Energy (KE) - 30
obtained from : Total Energy (TE = KE + PE) |
the potential 4 - Potential Energy (PE) 425
5
well of the ‘ _ 20 3
3 - o)
sputtered < 2
atom’s PE @O 2 . 15$8
1 (@]
curve > 4. 1108 o
® Anaverage g | T=473Kj, S5
sbe is S od—— 15 3¢
calculated - lo £
from the -1 : 2
sputtered )] :ﬁ average SBE = 1.4 15 2
atoms N N T,
obtained from 0 100 200 300 400
100 MD flights Time (femtoseconds) i}
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Surface binding energy from MD
simulations at 653 K is lower !

Kinetic Energy (KE)

3'5__ Total Energy (TE = KE + PE) ] 25
3.0 - ("\ Potential Energy (PE) ]

2.5- N\ / 420 S
—~ 2.0 - 3
’ D
?g 1.5- 1™ g
> 1.0- < S
2 0] 1102 &
¢ 057 T=633K| 2z¢
-0.5- | S
104 ‘ average SBE = 0.785 lo 3
-1. 5_- | a
@

-2.0 5

50 0 50 100 150 200 250 300 350 400
Time (femtoseconds)
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Info from MD Both the MD-derived sbe and the PKA energy
and angular distribution obtained by MD is inserted

simulations

R it {Input files} |

4 ) : Loop proceeds until
PKA creation : All recoils are either
usingMD  [¢----------o- | Sputtered or stopped
results
| e
oo Process Generate recoils
recoils using BCA
— Std. VFTRIM
{ output | | ----- MD-TRIM Addition
Both VF- and MD- TRIM
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Li* on liquid Li (D-treated) [IAX
data with ad-hoc VFTRIM-3D Model

A‘Lps
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D-treatment of liquid Li surfaces
versus target temperature (He™)

2.0 ' | v | T T T T T T T T
A He' on non D-treat lig lithium (100% Li)
| A He' on partial D-treat liq lithium (~ 25% D-Li,® = 5 x 10'® D/cm®) ]
v He' on partial D-treat liq lithium (~ 30% D-Li, ® = 3 x 10" D/cm®)
° ®m He' on D-sat liquid lithium (50% D-Li)
o) 15} .
>__ —~
C
o .0
g —
n A
Sg 10 R
S
D ©
c o |
5 3 |
c >~ 05 -
-|:l T
- v %
0.0 '

100 150 200 250 300 350 400 450
Target Temperature (°C)
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MD-TRIM Results

Estimated Experimental Results : 0.8 1.2
PKA Dist. MD-TRIM Results
T )
b\ | VFTRIM VFTRIM 473°K 653°K
(Std. Ver.) | (BCADist) | (MDDist) | (MD Dist.)
0.79 eV 0.8415 1.1130 1.1827 1.2938
1.40 eV 0.4915 0.6430 0.7549 0.8084
1.68 eV 0.4152 0.5180 0.6378 0.7048
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The Allain-Ruzic model appears to
fit and explain liquid-metal erosion
enhancement with temperature

® The characteristics of the near-surface energy
cascade are important in explaining the enhanced
nature of physical sputtering of material measured
In experiments. The cascade can not be treated in
a binary fashion and is temperature dependent

® How a particle that is sputtered is bound to its
neighboring atoms is crucial in being able to model
a reasonable “surface binding energy”. It is a
sensitive function of temperature.
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Future work

® Long temporal mechanisms: thermal
sputtering, ion-induced evaporation

® Effects of hydrogen isotope implantation on
near-surface cascade dynamics and Li
erosion

® liquid-vapor interface: liquid-metal
stratification

® Other interactions: inert gases and liquid Li
(e.g. He, Ne, Ar)

Pﬂ_ﬁ\ % .'-.0.'. 2%
7 RATERIAL
Lps INTERACTION GROUP

||||||||||||||||||||||||||||||||||||||||||||||||||||||||



Acknowledgements

® G. H. Miley, NPL Associates, Inc (STTR
funding Phase |l) DE-FG02-01ER86134

®* ALPS/DOE funding

® Undergraduate students: Jason Tillery, Matt
Hendricks, lan Treviranus

s \Lp s INTERACTION GROUP

||||||||||||||||||||||||||||||||||||||||||||||||||||||||



