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Motivation and Technique

• Desire predictive simple model for effect of pumping on
NSTX edge plasma
– Provide means for comparing density control schemes, e.g. Lithium

systems vs. in-vessel cryopumping

– Should be benchmarked against other experiments

• Consider simple recycling model to evaluate examples of
each scheme
– DIII-D data from first cryopump in 1993

– CDX-U data from liquid Lithium

• Goal: Predict range of reduction in edge/pedestal density in
H-mode, and resulting transport and CD efficiency changes



Particle Balance and Recycling Model

• Consider core and SOL
particle content equations

• Assume SOL neutral and
ion density in steady state
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Simplified Particle Balance and Recycling Model

• Define p* = p/(1- )

– Steady state: p* =N/(SNBI+Sgas)

• Normal assumptions:
–  NBI ~ 1

– Rp( pump + core)>>(1-Rp)

–  pump, core independent of time

• Particle balance equation becomes:

• Has been used to model step change
in p (L-H) and pumping ( pump>0)
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Limits of Particle Balance and Recycling Model

• Note p*/ p = 1/(1- )

• Pump off: p*/ p ~ 1+ coreRp/(1-Rp)

–  p*/ p ~ 6

• Pump on: p*/ p ~ ( core+ pump)/ pump

–  p*/ p ~ 2

⇒ ne should go down by 2/3 w/pumping

• DIII-D specific data:

– Rp ~ 0.98 for carbon (reference?)

–  core ~ 0.1 (Rensink, PoF B 1993)

–  pump ~ 0.1 (Maingi, NF 1999)
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Comparison of Unpumped and Pumped DIII-D Discharges

• Edge electron pressure holds
constant as ne reduced

• Relative change in edge ne

larger than core

core edge



Particle Balance and Recycling Model - DIII-D cryopump

• DIII-D specific data:
– Rp ~ 0.98 for carbon (reference?)

– Rp changes slowly (Maingi, NF 1996)
–  core ~ 0.05-0.15 (Rensink, PoF B 1993)

–  pump ~ 0.1 (Maingi, NF 1999)

–  gas ~ 0.1 (Maingi, JNM 1997)

–  τp/ τE = 2.5 (~ Owen, JNM 1997)

• Solid core  - fixed in time
– Ne goes down on τp

* timescale

• Dashed core ~ 1/ne
2

–  τp
* increases with time

– Ne equilibrates faster than initial τp
*

#77180: ne (TS)@ 0.8 m

core fixed

core ~ 1/ne
2



Simple Model Can Reproduce DIII-D Data

•  τp/ τE is effectively an input, but within range of previous
studies (2-4). Note that τp is estimate of core confinement.

•  τp
* increases with time, so that apparent density roll-off

faster than simple e-folding with initial τp
*

• Diminishing returns as ne goes down since SOL shielding
efficiency goes down, and core fueling fraction increases
relative to pump fraction

• Edge ne goes down more than core ne - profile more peaked

• Model can be extrapolated for multiple pumps



Limits of Particle Balance and Recycling Model

• Note p*/ p = 1/(1- )

• Pump off: p*/ p ~ 1+ coreRp/(1-Rp)

• CDX-U specific data:

– Rp ~ 0.98 for carbon (reference?)

– Rp ~ 0.2-0.5 (<0.1 for liquid lithium)

–  core ~ 0.5 (guess)

⇒  p*/ p ~ 25 (SS), 1.5 (lithium)

⇒ ne should go down by 94% w/pumping
or fueling should increase by 16-17x at
constant density

• Actual fueling increased by ~ 8x

RpΓ⊥
i

Γ⊥
i

(1 − Rp)Γ⊥
i

pumpRpΓ⊥
i

coreRpΓ⊥
i

N / p

NBISNBI

gasSgas

(1 − NBI )SNBI
(1 − gas)Sgas



Fueling/Density Increased by 8x in CDX-U with Liquid
Lithium limiter as main PFC
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Uncontrolled (non-disruptive) density rise in long pulse
H-modes in NSTX
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• High p and continued gas puffing
both contribute to dN/dt

• Core fills in with time



NSTX D  Peaked on Inboard Side, but Particle Flux Peaked on
Outboard side if Inner Divertor is Partially Detached

#108724

total

outerinner

inner div.
detached

outer div.
attached

• Inner side
detached

• Outer side
attached

• Ions/photon
=1 (detach)

• Ions/photon
=20 (attach)

• Division at
R ~ 0.6m

• Out div. has
~ 4x times
current of
inner div.



Classic Density Rise Model Can Be Modified with Realistic
Time Dependencies

• Assuming time dependent gas source term; time dependence
of plasma content has analytic solution
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Particle Containment Times ~ 0.5 sec. in NSTX with more
realistic gas fueling rate model

τp* ~ 0.5 sec
τE ~ 0.055 sec



Remarks about Cryopump and Lithium Comparison

• If outer cryopump optimized, NSTX edge density control should be
similar to DIII-D

– plenum capture fraction should be comparable =

– similar ratio of p*/ p < 10 in un-pumped discharges =

– higher outboard fraction of outer particle flux +

– possibly higher core fueling efficiency (conductance, density) –

• Impact of lithium on NSTX won’t be as strong as CDX-U

– core fueling efficiency lower in NSTX, so reduction in p* won’t be
as large

• Either system will likely provide adequate density control



Action Items

• NSTX: Measure particle flux profile with Langmuir probes

• NSTX: Estimate core fueling efficiency with UEDGE/
DEGAS-2 (and assess role of main chamber recycling)

• CDX-U: develop technique to estimate Rp with SS tray

• NSTX: predict Rp with lithium coating system (module A)
and flowing liquid lithium (module B)

• NSTX: compute effect of change in edge ionization source
on core transport with WHIST or QUIST



Backup



NSTX Explores Low Aspect Ratio (A=R/a) physics regime

}⇒A ≥ 1.27

Passive stabilizing 
plates

Graphite tiles
Parameters Design Achieved
Major Radius  0.85m
Minor Radius  0.67m
Plasma Current  1MA  1.5MA
Toroidal Field  0.6T  0.6T
Heating and Current Drive
NBI (100keV)  5MW  7 MW
RF (30MHz)  6MW  6 MW

Wall Conditioning:
350 deg. bakeout of graphite tiles
Regular boronization (~3 weeks)
Helium Glow between discharges
Center stack gas injection



Load-and-Dump Gas Injectors Have Different Flow
Characteristics and Delay Time
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D  profile normally peaks near Inner Strike Point, but
reverses during heat pulse

Ip [MA] PNBI /10[MW]
WMHD *4[MJ]

Dα near ISP
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• Reversal of in/out
Dα profile during
heat pulse is
consistent with
inner side being
detached

• Similar situation in
pre-cryopump days
at DIII-D

• Reduced recycling
will probably re-
attach ISP, so Dα
will go down

• Likely more
particles near OSP;
need LP data to
confirm



Peak heat flux always peaks near outer strike point in
lower-single null configuration

• Good power accountability:Pdiv
in+out ~ 70% of PSOL
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