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Strong plasma transport in the far scrape-off
layer is an important (and controversial) issue

* Plasma flux to the radial wall, T'=-D d(n;)/dr + n,V

conv

« Traditionally SOL transport modeling has used constant D
— Good fits is often found to experimental divertor plasma profiles
— Data on main-chamber ionization-radiation and gas pressure is
often low & increasing D or V___ with r can improve this

conv

* Probe measurements on Alcator C-Mod, DIlI-D, NSTX sometimes
show strong far-SOL transport

— Alcator C-Mod -- LaBombard, Lipschultz
— DIII-D -- Boedo, Rudakov, Whyte
— NSTX, C-Mod -- Zweben, et al.

Self-consistent turbulence/transport modeling also finds
strong far SOL transport

Relevant for PFCs because of enhanced sputtering
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Plasma outward convection in the outer SOL
may be a substantial source of wall sputtering

Exp. data can show large transport in
the far SOL, large D and/or V_,,,,

Polarization ExB drift can explain rapid

far-SOL transport of existing blobs
(Krasheninnikov, D’lppolito, et al.)

For modeling, one can often use
spatially-dependent D or V,,,, for
hydrogen to yield the same flux I

Taking V., as inferred from exp. &
modeling ARIES-RS charge-exchange
sputtering with the NUT neutral code
shows substantial main-chamber
erosion can occur
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Comparison with/wo convection shows wall flux
changes the most, along with impurity efficiency

ARIES-RS single;null variant
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2D UEDGE and 3D BOUT provide complementary _@
components for edge-plasma modeling =

BOUT UEDGE Density fluctuations

UEDGE/BOUT anifx, 8, x] (ng)

Turbulence Transport :
, Grid

- UEDGE
—  2-D fluid transport model

—_ i 1}
Extenswelly used for | DILD BOUT
- Experimental analysis Plasma edge ol
_ o plasma ¢
« Edge modeling turbulence= |

section ] ) §
simulation

- BOUT

— 3-D edge turbulence model
« Collisional fluid equations

* Realistic magnetic
geometry
— Benchmarked against Exp.. e
* DD {L-mode) Resistive drift-\:;;ve tur;:r;::e
* C-Mod (QC-mode)
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Turbulence and net transport exhibit widely
different characteristic time scales

Within the iterative coupling
scheme, the BOUT turbulence
is evolve for a time, t; ~ 50-
100 us

During the same iteration
step, UEDGE takes a large
time step, witht, > 10 ms

Resulting final state is thus a
statistical steady-state

lon density (1019 m'3); turbulence potential (a.u.)

3

Comparison of transport and
turbulence time scales
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Coupling algorithm uses an iteration over index _@
m; UEDGE & BOUT evolved on own time scales =

Continuity equation is solved for 2D, axisymmetric plasma & neutrals

ON;™ 3t + div(N;™ V,m + T,m1) = §_m

Perpendicular turbulent particle flux comes from BOUT:
rm=1-o,)I,™2+a,<n,v,>m

where o, is a relaxation parameter (~0.25). Likewise, the ion profile in
BOUT is updated according to

N™1=(1-a,) N™2+ a, N™

where o, is a second relaxation parameter (~0.5). The parallel ion
velocity, V,;, is similarly updated from UEDGE to BOUT.
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Result of 9 iterations shows an approach to _@
equilibrium with strong outer-SOL transport: L-mode | =~

» lterations are performed from m=0 (initial profile) to m=9

* Density profile converges more rapidly than turbulent fluxes

a) Midplane density profile evolution b) Midplane diffusion evolution

3.0

N
o

Separatrix

% m=9

1.0_'

-y
(=]

0.3}

lon density (1019 m'3)

Effective diffusion coeficient (mzls)

i
0.1 M 1 i il M 1 i L 0
-4 -2 0 2 4

Radial distance (cm) Radial distance (cm)
ALPS/PFC 11/17/03 8




Surface plots show full structure of final effective
diffusion coefficient & neutral density: L-mode =)

« Diffusion coefficient has a strong ballooning character as expected
for curvature driven modes

* Neutrals arise self-consistently from recycling at the divertor and
outer wall

a) Final effective diff. coeff. (m =9); b) Final ion density
equivalent V has same form

conv
40¢

na

20F

I

il
)
=y ‘QNVNN\

Diffusion coefficent (m?2 /s)

il

/
F
,ii,,/!;’/‘zr\\ \

i 7R

2 7///[[ 'Illl, ‘

lon density (1019 m™)

Rognlien
ALPS/PFC 11/17/03 9



Self-consistent neutral density shows substantial
outer-wall source from strong radial ion flux E

* Neutrals arise from recycling at the divertor (R,=0.98) and outer wall
(R,=0.9)

* For this example, ion flux to wall is 2.6 times larger than to plates

a) Final neutral density (m =9) b) Radial ion flux along outer wall
10
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BOUT can also evolve its own profiles over ~1 ms:
initial examples (Xu)
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« Strong plasma transport in the far SOL can substantially increase
wall erosion and needs to be well assessed

— Self-consistent edge turbulence shown to produce such fluxes,
similar in character to probe measurements

— Larger ion fluxes generate more main-chamber neutrals
— Charge-exchange products from hotter ions then cause erosion

« Behavior of different operating regimes (L-mode, H-mode, near
density limit) need to be better understood

— Experiment and modeling suggest high density is worse
— ELMs may also produce significant wall flux

 Helium and wall impurities likely to be transported differently
— Helium initiated in core should behave like hydrogen
— Wall impurities may convect inward initially, before mixing
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