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Objective

Detailed analyze of mixed material behavior under ion
iIrradiation

- Combine Monte Carlo ion transport calculations with kinetic
models
- Inclusion of possible thermally activated processes will
enable the study of the temperature dependence of the
mixed materials under ion irradiation

- Study the dynamic evolution of the near surface region of
a material bombarded with multiple fluxes with the
possibilities of oxide or precipitate layer formation




ITMC Code

® ITMC code (lon Transport in Materials & Compounds — Part of
HEIGHTS Package).

- 3-D Monte Carlo simulation of charged particles transport in solid
materials.

- Material can be an alloy with a number of layers, each has a
different composition

- Sputtering, backscattering, implantation, range, spatial
composition, and defect profiles are calculated.
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ITMC Code
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Kinetic Processes

® Kinetic Processes

Preferential sputtering
Displacement mixing
Radiation induced segregation
Radiation-enhanced diffusion
Gibbsian adsorption

® Kinetics of ion implantation and near surface precipitation
- Dynamic behavior of the implant profile
- Temperature and dose effects
- Development of the oxide or precipitate layers
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Kinetic Processes
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Kinetic Processes
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Kinetic Processes
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Modeling of Kinetic Processes

General Kinetics Equation

oC,
ot

K, j = interstitials, vacancies, implanted ions or target
components

G’s are functions of the species concentrations and diffusion

coefficients.

F. = source/sink terms that include local rates of production
and loss of point defects by various mechanisms,
production of the species through implantation into the
tungsten, and losses through sputtering.
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Simplified Mixing Model in W Divertor

® Tungsten divertor is bombarded with 0.1 keV Be, 0.3 keV O,
75eV D and T at different angles

- First 3 mono-layers are considered
- Sputtered Be and W
- Reflected Be
- Implanted Be
- Re-deposition of reflected and sputtered Be
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Simplified Mixing Model in W Divertor
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Simplified Mixing Model in W Divertor

W Be T D @)
atomic number (2) 74 4 1 1 8
mass number (m) 183.9 9 3 2 16
component density (g/cm3) 19.3 8 )V . 1 .. 1 ..
bulk binding energy (ev) 4 3 0 0 0
surface binding energy (ev) 111 3.4 0 0 0
cutoff energy (ev) 4 3 3 3 3
displacement energy (ev) 20 20 1 ... T

*

Flux, #/ms | 5.443x10%° 1.4x10% 1.4x10% 1.4x10%
Energy,ev | ... 100 75 75 300
Angle of incedence | ... 45 60 60 45

* With convection term:

Inner Divertor: ®g, = 5.443x10° #/m%s (Jg, = 2.15x10%' s, Area = 3.95 m?)
Outer Divertor: ®g, = 3.021x10%° #/m’s (Jg, = 1.55x10% s, Area = 5.13 m?)

Without convection term:
Inner Divertor: ®g, = 4.785x1019 #/m’s (Jg, = 1.89x10%° s, Area = 3.95 m?)

Outer Divertor; ®g, = 1.633x1019 #/m°s (Jg, = 8.38x1019s™, Area=5.13m?




Simplified Mixing Model in W Divertor
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Simplified Mixing Model in W Divertor
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Simplified Mixing Model in W Divertor
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Simplified Mixing Model in W Divertor

Be Atom Fraction in the First 3 Mono-Layers of W-xBe System at Different
Re-Deposition Rates
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Simplified Mixing Model in W Divertor

Be Atom Fraction in the First 3 Mono-Layers of W-xBe System as a
Function of Re-deposition Rate
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