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Motivation

• Plasma interaction with the first wall is of critical importance to ITER and  future

power reactors.

• Far Scrape-off Layer (SOL) density profiles are often relatively flat and extend all

the way to the outer wall.

• Fast edge diagnostics and turbulence simulation codes show the existence of

intermittent coherent structures born near the LCFS and propagating radially

towards the wall.

• If the intermittent structures reach the outer wall, they may cause erosion above

the level expected from time-averaged SOL plasma parameters.

• Increased particle and heat cross-field fluxes during Edge Localized Modes

(ELMs) may reach the outer wall and cause extra damage.

• Langmuir probes with their high spatial and temporal resolution provide an

excellent diagnostic tool for far SOL plasma studies.

• A large database accumulated by the two plunging probe arrays on DIII-D

contains plenty of far SOL and near-wall data yet to be analyzed.
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Experimental setup
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Mid-plane Reciprocating Probe Array

• The in-and-out plunge time is about 0.2 s

• The plunge length is about 15 cm

• On time scale < 1 ms probe can be
considered stationary

• Spatial resolution:  ~ 2 mm

• Temporal resolution:  1 µs (Isat and Vf)

  10 µs (Te)
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“Knee limiter”
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Shadow-casting elements of DIII-D vessel

• Connection length decreases

with distance into the SOL

• Depending on the magnetic

configuration different elements

may start casting shadow at

different distances from the

LCFS

• Some of the shadow casting

elements (baffles, “knee

limiter”) are toroidally

symmetric, others (bumper
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Bumper limiters - most protruding elements of the outer wall

0°

240°
probe

Limiters

230°

95°

310°

B

• There are 3 toroidally

displaced limiters

• Limiters have radial

extent of about 2 cm

• 230° limiter is close to

the mid-plane probe
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X-point probe array

Probe head layout
(view from above)

R

Vf
Double
probe

Is1

Is2

• The in-and-out plunge time is 0.3 s

• The plunge length is about 25 cm

• Spatial resolution:  ~ 1 mm

• Temporal resolution:  1 µs (Is and Vf)

• ne and Te profiles derived from double probe data

• Mach number of ion flow derived from two

saturation currents

X-point probe
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Far SOL density and temperature profiles

in Lower Single Null (LSN)

Simple As Possible Plasmas (SAPP) L-mode
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Generation of profiles from the probe data

Shot# 105524: LSN, Bt = 2 T, <ne>  6 1019 m-3, fGw~ 0.6

• In 1 ms the probe moves

by about 1.5 mm, which

is twice smaller that the

radial extent of the tips

• Therefore, on the time

scale of below 1 ms the

probe may be roughly

considered stationary

• Profiles are generated by

time-averaging of the

probe data over 1 ms
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SOL density profiles in SAPP L-mode show 3 distinct regions

SAPP L-mode

B = 2 T, I
p
 = 1 MA
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Temperature and relative density fluctuation profiles
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• Temperature decay length is shorter than that for density in near and middle SOL

• In the shadow region temperature and density decay lengths are close

• Relative fluctuation levels stay flat and do not change with average density

• Absolute fluctuation levels increase with density
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• Temperature profile does not seem to be affected by the shadows in this case

• Temperature decay length is longer than at higher Ip

• Relative fluctuation levels stay flat and at about the same level
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So, what is different between those two groups of shots?

• Greenwald fraction is higher for the second group (lower plasma current) shots

• Connection lengths to the upper and lower baffles are  about 25% longer for the

second group

• More interestingly:
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In the second group of shots absolute

fluctuation levels are higher in far SOL

In the second group of shots far SOL

fluctuations exhibit large bursts

We will come back to this later
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Effect of the outer and upper gap scans 

on the far SOL profiles
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Far SOL density decreases with increased outer gap

<ne>  3.5 1019 m-3, fGw~ 0.37

<ne>  4.2 1019 m-3, fGw~ 0.42
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All 3 shots: <ne>  2.7 1019 m-3, fGw~ 0.3
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Comparison of L and H modes in LSN
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High-density H-modes with small ELMs

Shot# 107805: LSN, Bt = 1.6 T, PNBI = 1.7 MW, fGw~ 1

Shot# 107806: LSN, Bt = 1.6 T, PNBI = 0.75 MW, fGw  0.85

• Two consecutive high-density H-

mode discharges

• First discharge had higher heating

power and comparatively long

(~30 ms) ELM-free periods

• Second discharge had smaller

(about 6 times)  but very frequent

ELMs

• ELM duration from D  is 2-3 ms
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In H-mode between ELMs SOL density is lower than in L-mode

L-mode

Shot 107410

<ne>  4.5 1019 m-3, fGw~ 0.58

LSN configuration

H-mode

Shot 107411

<ne>  6.5 1019 m-3,  fGw~ 0.65

ELMs

During ELMs SOL density increases to L-mode level
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ne ( 1019m-3)
~
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• Te between ELMs is lower than in L-mode through most of the SOL

• Fluctuation levels of both ne and Te are lower between ELMs than they are in L-mode

• During ELMs ne, Te and fluctuation levels increase to or above L-mode levels
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Far SOL profiles in Upper Single Null (USN) 

and Inner Wall Limited (IWL) configurations
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Temperature and density fluctuation profiles
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• Far SOL temperature is higher than in LSN discharges (but this may be explained

by higher heating power)

• RMS fluctuation levels are rather flat, so relative levels increase towards the wall

• During ELMs Te and fluctuation levels are higher than in L-mode
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Intermittent convection 

and its possible effect on the outer wall
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Intermittent cross-field convection in the SOL of DIII-D

• Plasma density, electron temperature and time-resolved particle and heat fluxes in

the SOL are intermittent in space and time.

• Probe, Beam Emission Spectroscopy (BES) and mid-plane tangential D  data

show the existence of intermittent coherent structures born near the LCFS and

propagating radially towards the wall.

• Intermittent structures have been shown to account for up to 70% of the net cross-

field particle and energy transport.

• Intermittent events have qualitatively similar character in L-mode and H-mode

both between and during ELMs.

• Amplitudes of the intermittent events during ELMs are comparable to those in

high density L-mode.

• In ELM-free H-mode intermittent events are much smaller.

• Previous analysis have shown that the intermittent structures drain particles and

heat, slow down and shrink in size as they propagate to the wall.

• Do the intermittent structures get to the wall and can they cause sputtering?
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In low density L-mode intermittent events slow down and
decay before they reach the wall
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Data taken over a series of 22 identical SAPP discharges

with mid-plane probe moved between shots in 5 mm steps
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Do intermittent events ever get to the wall? Yes, they do!
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In high density L-mode and

in H-mode during ELMs

intermittent events do get to

the wall

But between ELMs even in

high density H-mode signals

at the wall are very low

Further experiments are needed to quantify the sputtering effect
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Summary

• SOL density in L-mode is measurable all the way out to the wall

• Increasing outer wall gap decreases plasma-wall contact

• Fluctuation-induced cross-field transport increases with density

and flattens far SOL profiles, thus increasing plasma-wall contact

• Particle and heat pulses of ELMs reach remote structures such as

outer wall and divertor baffles

• Between ELMs plasma-wall contact is weaker than in comparable

L-mode conditions

• Intermittent events in low density L-mode quickly thermalize with

the background plasma, slow down and decay as they propagate

towards the wall

• In high density L-mode and during ELMs in H-mode intermittent

events do get to the wall and may cause sputtering


