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ITER utilizes a single-null divertor with steeply-
inclined divertor plates
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Poloidal cross-section showing « Nearly vertical plates reduce heat
edge-plasma region flux & facilitate plasma detachment
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ITER divertor plasma modeling has assumed
standard diffusive radial transport

Particle density (1/mXx3)

ITER assumes 100 MW power input to SOL

Here carbon modeled as a 3% concentration
Anomalous radial diffusion set at D = 0.3 m?/s, x,, =1 m?%s
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Divertor heat-flux is kept within allowable limits E

Heat Flux on Outer Divertor

 Wetted area is increased by 12408 =
strong tilting (similar, but more
extreme than Alcator C-Mod) 10108 |- i -
1-Total
o
« Sputtered carbon yields a further S y
necessary heat-flux reduction via >
line radiation N
« Addition impurity seeding with p=
neon sometimes considered T
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Outer midplane profiles yield low neutral density
and T, > T_ near the outer wall
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* Plasma recycling in the divertor is dominant; low wall density
* lon temperatures outside separatrix in 200-400 eV range

Plasma and Neutral Densities - Midplane
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Experiments and turbulence simulations indicate —@
SOL transport can have strong outward component |~

+ Gas-puff imaging and H-alpha
light show outward moving

filaments (“blobs”) (Zweben et al.) Convective Velocity Profile — Midplane
. 70 — T T T T y T T
- | /
* Probes see outward moving ~E ® :
perturbations (Boedo, Rudakov) : 50 |- Separatrix |
pat hﬁh“““hq
(8]
* lonization balance from H-alpha 2 “ |
(Lipschultz, Whyte) - |
2 L
=z I
« Transport modeling indicates that 4 %
some features of the SOL can be E ol |
explained by outward convection § , |
(Pigarov et al.) 0 ——T;/ . A L
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Convection applied to ITER shows some radial

broadening of profiles at the divertor

With convection
—»

Without convection
—
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Neutral density at the outer midplane increases a

factor of 50 with convection

Plasma and Neutral Densities - Midplane
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Increased neutral density caused by convective ™
loss poses a potential wall erosion problem -

* Neutrals from the close chamber wall can penetrate to a
sufficiently high T, region that charge-exchange neutrals are well
above the sputtering threshold

* Related modeling by Kotchenreuther, Rognlien, and Valanju for an
ARIES tokamak show that such loss can cause severe erosion

« These ITER cases need to be more completely evaluated,
including CX flux back to the wall
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There are many problems relating to ITER edge- E
plasma behavior that should be addressed

Impact of possible strong convective radial transport

- Effect of ExB drifts on transport

« Tritium co-deposition modeling needs plasma/neutral properties,
including carbon sputtering, surface evolution, and plasma
chemistry

e ELMs induced heat-flux on divertor and walls
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